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Abstract

In many object allocation problems, some of the objects may be indistinguishable from each other.

For example, in a college dormitory, rooms in the same building with the same floor plan are effectively

identical. In such cases, it is reasonable to assume that agents are indifferent between identical objects,

and matching mechanisms in these settings should account for the agents’ indifferences. Top trading

cycles (TTC) with fixed tie-breaking has been suggested and used in practice to deal with indifferences

in object allocation problems. Under general indifferences, TTC with fixed tie-breaking is neither Pareto

efficient nor group strategy-proof. Furthermore, it may not select an allocation in the core of the market,

even when the core is non-empty. We introduce a new setting, objective indifferences, in which any

indifferences are shared by all agents. In this setting, which includes strict preferences as a special case,

TTC with fixed tie-breaking maintains Pareto efficiency, group strategy-proofness, and core selection.

Further, we characterize objective indifferences as the most general setting where TTC with fixed tie-

breaking maintains these important properties.

1 Introduction
Important markets including living donor organ transplants, public housing assignments, and school choice
can be modeled as Shapley-Scarf markets: each agent is endowed with an indivisible object and has pref-
erences over the set of objects. Monetary transfers are disallowed, and participants have property rights to
their own endowments. The goal is to re-allocate these objects among the agents to achieve efficiency and
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stability. The usual stability notion is the core: an allocation is in the core if no subset of agents would prefer
to trade their endowments among themselves. In the original setting of Shapley and Scarf (1974), agents
have strict preferences over the houses, and Gale’s top trading cycles (TTC) algorithm finds an allocation in
the core. Roth and Postlewaite (1977) further show that the core is non-empty, unique, and Pareto efficient.
Roth (1982) shows that TTC is strategy-proof; Bird (1984), Moulin (1995), Pápai (2000), and Sandholtz
and Tai (2024) show that it is group strategy-proof. These properties make TTC an attractive algorithm for
practical applications.

However, the assumption that preferences are strict is quite strong. In particular, if any objects are
essentially identical, agents should naturally be indifferent between them. For example, consider the problem
of assigning students to college dormitory units. It seems reasonable to assume that two units with the
same floor plan in the same building are basically equivalent from a student’s perspective. In fact, the
undergraduate on-campus housing application process at UC Berkeley applies this same logic. For first-
year undergraduates, there are seven possible housing complexes (Unit 1, Unit 2, Unit 3, Stern, Foothill,
Clark Kerr, and Blackwell), each with a variety of possible room configurations (double-occupancy room,
triple-occupancy room, double-occupancy room in a 4-person suite, etc.). On housing applications, incoming
first-year students rank their five most preferred housing complex×floor plan pairs. Partly, this is due to the
practical challenges associated with collecting and aggregating students’ preferences over the thousands of
available dormitory units. More importantly, it demonstrates how it is implicitly assumed that students have
strict preferences over housing complex× floor plan pairs, but are indifferent between dormitory units of the
same type. Beyond college dormitory assignment problems, there are a host of real-world object assignment
problems (military occupational specialty (MOS) assignment, school choice, etc.) that can be modeled with
a similar structure.

We therefore present a model of Shapley-Scarf markets where there may be indistinguishable copies
(which we will call “houses”) of the objects (which we will call “types” or “house types”). Our model restricts
agents to be indifferent between houses of the same type, but never indifferent between houses of different
types. We call these preferences “objective indifferences.” We see objective indifferences as a minimal model
of indifferences, capturing the most basic and plausible form of indifferences.

In the fully general setting where agents’ preferences may contain indifferences, TTC with fixed tie-
breaking is often used in practice; ties in preference rankings are broken by some external rule. For example,
Abdulkadiroglu and Sönmez (2003) propose something similar in the setting of school choice with priorities.
However, TTC with fixed tie-breaking is not Pareto efficient nor group strategy-proof. In fact, there is an
inherent tension between these two properties: Ehlers (2002) shows that when agents have weak preferences,
there does not exist a Pareto efficient and group strategy-proof mechanism in Shapley-Scarf markets. With
weak preferences, the core of the market may be empty or non-unique. But even when the core of a market
is non-empty, TTC with fixed tie-breaking may not select a core allocation.

Objective indifferences adds structure to the case of general indifferences by constraining any indifferences
to be universal among agents. While the core may still be empty, it is essentially single-valued when it is
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non-empty. That is, for any allocations in the core, all agents are indifferent between their allocated objects.
In our setting, this means that every core allocation assigns an agent to the same house type, though not
necessarily to the exact same house. Therefore, under objective indifferences, the core can be thought of as a
unique mapping from agents to house types. Moreover, we show that in Shapley-Scarf markets with objective
indifferences, TTC with fixed tie-breaking recovers Pareto efficiency and group strategy-proofness. It also
selects a core allocation when the core is non-empty, and selects an allocation in the weak core otherwise.
In fact, the objective indifferences setting is the most general setting such that TTC with fixed tie-breaking
maintains any of these properties.

Others have have studied Shapley-Scarf markets with indifferences. Ehlers (2014) shows that in the
general indifferences setting, a mechanism is individually rational, strategy-proof, weakly efficient, non-
bossy, and consistent mechanism if and only if it is TTC for some fixed tie-breaking rule. Alcalde-Unzu
and Molis (2011) and Jaramillo and Manjunath (2012) propose new families of trading cycle mechanisms,
Top Trading Absorbing Sets (TTAS) and Top Cycle Rules (TCR), respectively, for the general indifferences
setting. Both TTAS and TCR mechanisms are strategy-proof, Pareto efficient, and core selecting. Aziz
and de Keijzer (2012) develop an even more general family of mechanisms, Generalized Absorbing Top
Trading Cycles (GATTC), containing both TTAS and TCR as subclasses. GATTC mechanisms are Pareto
efficient and core selecting, but are not generally strategy-proof. Plaxton (2013) defines a new subclass of
GATTC mechanisms which are strategy-proof, Pareto efficient, core selecting, and run in O(n3)-time, a
substantial improvement over TCR mechansims, which run in O(n6)-time, and TTAS mechanisms, which do
not run in polynomial time. Fundamentally, the challenge for any mechanism in a Shapley-Scarf market with
indifferences is determining which trading cycles to execute from among the many potential trading cycles
that indifferences may induce. Using a fixed tie-breaking rule is intuitive and easy to implement, but as
Ehlers (2014) shows, it comes at the expense of certain desirable properties, including Pareto efficiency and
core selection. Though we too study Shapley-Scarf markets with indifferences, we place additional structure
on the agents’ indifferences and demonstrate how this resolves many of the challenges that indifferences pose.

Our paper makes several important new contributions to the literature on Shapley-Scarf markets. First,
it defines and explores a new domain of preferences that accurately captures many real-world scenarios
where this model is applied. Second, it characterizes the most general setting where TTC has no obvious
drawbacks, in the sense that it retains all of the properties that make it so appealing under strict preferences.
Third, it illustrates the underlying reason why weak preferences cause TTC to lose these properties: it is
not indifferences per se, but subjective indifferences that may differ across agents.

Section 2 presents the formal notation. Section 3 explains TTC with fixed tie-breaking. Section 4 provides
the main results. Section 5 concludes. Proofs of our results can be found in Appendix A.
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2 Model

We present the model primitives. First we recount the classical Shapley and Scarf (1974) domain. Afterwards
we introduce our “objective indifferences” domain.

We now present the general model of a Shapley-Scarf market. Let N = {1, . . . , n} be a finite set of
agents, with generic member i. Let H = {h1, . . . , hn} be a set of houses, with generic member h. Every
agent is endowed with one object, given by a bijection w : N → H. The set of all endowments is W (N,H),
or W for short. An allocation is an assignment of an object to each agent, given by a bijection x : N → H.
The set of all allocations is X(N,H), or simply X. For any i ∈ N , we use wi and xi as shorthand notation
for w(i) and x(i) respectively. Similarly, for any Q ⊆ N we use wQ and xQ as shorthand notation for
w(Q) = {w(i) : i ∈ Q} and x(Q) = {x(i) : i ∈ Q} respectively.

A set Rn of possible preference profiles is a domain. Note that we restrict attention in this paper to
domains that can be expressed as Rn for some set of preference relations R over H. That is, every agent
has the same set of possible preference relations. If R is the set of strict preference relations over H, then
Rn is the classical strict preferences domain. If R is the set of weak preference relations over H, then
Rn is the classical general indifferences domain.

Our main domain is objective indifferences. Let H = {H1, H2, . . . ,HK} be a partition of H. An element
Hk of a partition is a block. Given H and H, let η : H → H be the mapping from a house to the partition
element containing it; that is, η(h) = Hk if h ∈ Hk. From any strict linear order > over H, we derive a
preference relation R> over H: for h, h′ ∈ H, we say that hR>h

′ if η(h) > η(h′) or η(h) = η(h′).
Let R(H) := {R>}> be the set of all R> given H. Given H, R(H)n is an objective indifferences

domain. We sometimes suppress (H) from the notation when context makes it clear. Note that all agents
are indifferent between houses in the same block of H and have strict preferences between houses in different
blocks. Thus, we may refer to the “indifference classes” for the domain with the understanding that everyone
shares the same indifference classes. As usual, we let Pi and Ii denote the strict relation and indifference
relation associated with a preference relation Ri ∈ R(H). For any Q ⊆ N and preference profile R, we use
RQ to denote {Ri : i ∈ Q}.

2.1 Mechanisms
This subsection recounts formalities on mechanisms and top trading cycles. Familiar readers may safely skip
this subsection.

A market is a tuple (N,H,w,R). A mechanism is a function f : Rn → X; given a preference profile,
it produces an allocation. When it is unimportant or clear from context, we suppress inputs from the
notation. For any i ∈ N , let fi(R) denote i’s allocated house under f(R). Similarly, for any Q ⊆ N , let
fQ(R) = {fi(R) : i ∈ Q}. Fix a mechanism f , a market (N,H,w), and a preference domain Rn. We work
with the following axioms.
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A mechanism is Pareto efficient if it always produces Pareto efficient allocations.

Pareto efficiency (PE). For all R ∈ Rn, there is no other allocation x ∈ X such that xiRifi(R) for all
i ∈ N and xiPifi(R) for at least one i ∈ N .

Group strategy-proofness requires that no coalition of agents can collectively improve their outcomes by
submitting false preferences. Note that in the following definition, we require both the true preferences and
misreported preferences to come from the preference domain Rn.

Group strategy-proofness (GSP). For all R ∈ Rn, there do not exist Q ⊆ N and R′ = (R′
Q, R−Q) ∈ Rn

such that fi(R
′)Rifi(R) for all i ∈ Q with fi(R

′)Pifi(R) for at least one i ∈ Q.

Individual rationality models the constraint of voluntary participation. It requires that agents receive a
house they weakly prefer to their endowment.
Individual rationality (IR). For all R ∈ Rn, fi(R)Riwi for all i ∈ N .

We also define the core of a market: an allocation is in the core if there is no subset of agents who could
benefit from trading their endowments among themselves.

Definition 1. An allocation x is blocked if there exists a coalition Q ⊆ N and allocation x′ such that
x′
Q = wQ and x′

iRixi for all i ∈ Q, with x′
iPixi for at least one i ∈ Q.

Definition 2. An allocation x is in the core of the market if it is not blocked.

The core property models the restriction imposed by property rights. Notice that individual rationality
excludes blocking coalitions of size 1. The last axiom is core-selecting.

Core-selecting (CS). For all R ∈ R, if the core of the market is non-empty then f(R) is in the core.

In Section 4, we characterize maximal domains on which TTC with fixed tie-breaking satisfies the axioms.
By a “maximal” domain, we mean the following.

Definition 3. A domain Rn is maximal for an axiom A and a class of rules F if

1. each f ∈ F is A on Rn, and

2. for any R̃n ⊃ Rn, there is some f ∈ F that is not A on R̃n.

Note that this definition of maximality depends on both the axiom and the class of rules, which differs from
elsewhere in the literature. Typically, a maximal domain for some property is the largest possible domain on
which some rule exists which satisfies the desired property. We focus on a specific class of rules: top trading
cycles with fixed tie-breaking. Again note that we only consider domains that can be written as Rn, which
is common.
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3 Top trading cycles with fixed tie-breaking

In this paper, we analyze top trading cycles (TTC) with fixed tie-breaking on the domains defined in the
previous section. For an extensive history of TTC, we refer the reader to Morill and Roth (2024). We briefly
define TTC and TTC with fixed tie-breaking.

Algorithm 1. Top Trading Cycles. Consider a market (N,H,w,R) under strict preferences. Draw a
graph with N as nodes.

1. Draw an arrow from each agent i to the owner (endowee) of his favorite remaining object.

2. There must exist at least one cycle; select one of them. For each agent in this cycle, give him the object
owned by the agent he is pointing at. Remove these agents from the graph.

3. If there are remaining agents, repeat from step 1.

We denote the resulting allocation as TTC(R).
TTC is well-defined only with strict preferences, as Step 1 requires a unique favorite object. In practice,

a fixed tie-breaking profile ≻ is often used to resolve indifferences. Given N , let ≻= (≻1, . . . ,≻n), where
each ≻i is a strict linear order over N . This linear order will be used to break indifferences between objects
(based on their owners). For any preference relation Ri and tie-breaking rule ≻i, let Ri,≻i

be given by the
following. For any j ̸= j′, let wjRi,≻iwj′ if

1. wjPiwj′ , or

2. wjIiwj′ and j ≻i j
′

Then Ri,≻i
is a strict linear order over the individual houses. Example 1 illustrates how we combine an

agent’s preferences and the tie-breaking rule to construct tie-broken preferences.

Example 1. Let N = {1, 2, 3, 4}. Agent 1’s preferences R1 and tie-breaking rule ≻1 are shown below. In
our visual representations of preference relations, each line represents an indifference class, and the houses
on any line are strictly preferred to houses on lines below them. For example, the representation of R1 below
indicates that w3 I1 w4 P1 w1 I1 w2.

R1

w3, w4

w1, w2 +

≻1

1
2
3
4

→

R1,≻1

w3

w4

w1

w2

Since w3I1w4 and 3 ≻1 4, we have w3P1,≻1
w4. Likewise, since w1I1w2 and 1 ≻1 2, we have w1P1,≻1

w2.
Therefore, agent 1’s complete tie-broken preferences R1,≻1

are given by w3 P1,≻1
w4 P1,≻1

w1 P1,≻1
w2.
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Given a preference profile R ∈ Rn and a tie-breaking profile ≻, let R≻ = (R1,≻1 , . . . , Rn,≻n). TTC with
fixed tie-breaking (TTC≻) is TTC≻(R) ≡ TTC(R≻). That is, the tie-breaking profile is used to generate
strict preferences, and TTC is applied to the resulting strict preference profile. Formally, each tie-breaking
profile ≻ generates a different TTC≻ rule. For a given R and ≻, we use TTC≻(R) to refer both to the
step-by-step procedure of TTC≻ , and to the final allocation it generates. The following example illustrates
how TTC≻ works in the objective indifferences domain.

Example 2. Let N = {1, 2, 3, 4}. The preference profile R = (R1, R2, R3, R4) and tie-breaking profile ≻=

(≻1,≻2,≻3,≻4) are shown below. R and ≻ are combined as shown in Example 1 to construct the tie-broken
preference profile R≻ = (R1,≻1 , R2,≻2 , R3,≻3 , R4,≻4). Recall that TTC≻(R) is equivalent to TTC(R≻).

R1 R2 R3 R4

w2, w3 w1 w1 w2, w3

w1 w2, w3 w4 w4

w4 w4 w2, w3 w1

≻1 ≻2 ≻3 ≻4

2 1 3 3
1 2 2 1
3 3 1 2
4 4 4 3

R1,≻1
R2,≻2

R3,≻3
R4,≻4

w2 w1 w1 w3

w3 w2 w4 w2

w1 w3 w3 w4

w4 w4 w2 w1︸ ︷︷ ︸
Preference profile R

︸ ︷︷ ︸
Tie-breaking profile ≻

︸ ︷︷ ︸
Tie-broken preference profile R≻

1 2

3 4

Step 1 of TTC≻(R):
Each agent points to the owner of their favorite house according to their tie-
broken preferences, represented by the black arrows. The red dashed arrows
are only shown to emphasize that agents 1 and 4 are indifferent between
their top choices, w2 and w3. Agents 1 and 2 form a cycle, and therefore
swap houses.

3 4

Step 2 of TTC≻(R):
After removing the agents assigned in Step 1, the remaining agents (3 and
4) point to the owner of their favorite remaining house. They form a cycle,
and therefore swap houses. Since every agent has been assigned to a house,
the TTC≻ procedure ends. The resulting allocation is x = (w2, w1, w4, w3).

4 Results
In the general indifferences domain, TTC≻ mechanisms are not Pareto efficient, core-selecting, nor group
strategy-proof. We give some simple examples below to illustrate these failures. However, we show that in
the objective indifferences domain, TTC≻ mechanisms satisfy all three properties. Furthermore, we show
that objective indifferences characterizes the set of maximal domains on which TTC≻ mechanisms are PE
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and CS, and characterizes the set of “symmetric-maximal” domains on which TTC≻ mechanisms are GSP.

4.1 Pareto efficiency and core-selecting
When we relax the assumption of strict preferences and allow for general indifferences, TTC≻ loses two of
its most appealing properties: Pareto efficiency and core-selecting. However, in the intermediate case of
objective indifferences, TTC≻ retains these two properties. Moreover, on any larger domain, TTC≻ loses
both Pareto efficiency and core-selecting. Thus, we show that it is not indifferences per se, but rather
subjective evaluations of indifferences which cause TTC≻ to lose these properties.

We first demonstrate that TTC≻ mechanisms are not Pareto efficient under general indifferences. Ex-
ample 3 gives the simplest case.

Example 3. Let N = {1, 2}. The preference profile R = (R1, R2), tie-breaking profile ≻= (≻1,≻2), and
tie-broken preference profile R≻ = (R1,≻1

, R2,≻2
) are shown below.

R1 R2

w1, w2 w1

w2

≻1 = ≻2

1
2

R1,≻1 R2,≻2

w1 w1

w2 w2︸ ︷︷ ︸
Preference profile R

︸ ︷︷ ︸
Tie-breaking profile ≻

︸ ︷︷ ︸
Tie-broken preference profile R≻

The TTC≻ allocation is x = (w1, w2), which is Pareto dominated by x′ = (w2, w1) since

(x′
1 =) w2I1w1 (= x1) and (x′

2 =) w1P2w2 (= x2).

This example demonstrates the underlying reason that TTC≻ fails PE under general indifferences: tie-
breaking rules may not take advantage of Pareto gains made possible by the agents’ indifferences. However,
under objective indifferences, if any agent is indifferent between two houses, then all agents are indifferent
between those two houses. Consequently, objective indifferences rules out situations like the one shown in
Example 3.

Under general indifferences, the set of core allocations may not be a singleton; there may be no core
allocations or there may be multiple. As Example 3 demonstrates, even when the core of the market is
non-empty, TTC≻ may still fail to select a core allocation.1 However, under objective indifferences, if the
core of a market is non-empty then TTC≻ mechanisms always select a core allocation.

In fact, the objective indifferences setting characterizes the entire set of maximal domains on which
TTC≻ mechanisms are Pareto efficient or core-selecting. That is, if all TTC≻ mechanisms are PE or CS on
a domain Rn, then it must be a weak subset of some objective indifferences domain. Conversely, for any
superset of an objective indifferences domain, there is some TTC≻ mechanism that is not PE or CS.

1It is straightforward to see that x′ = (w2, w1) is in the core of the market and x = (w1, w2) is not.

8



Theorem 1. The following are equivalent:

1. Rn is an objective indifferences domain.

2. Rn is a maximal domain on which TTC≻ mechanisms are Pareto efficient.

3. Rn is a maximal domain on which TTC≻ mechanisms are core-selecting.

Proof. Appendix A.1.

The full proof is in the appendix, but the intuition is simple. The objective indifferences domain precludes
possibilities such as Example 3, and any larger domain inevitably introduces the possibility of such a pair.

It follows from Sönmez (1999) that under objective indifferences, the core of a market is essentially
single-valued when it exists. That is, for any two allocations x and y in the core of a market, we have xiIiyi

for all agents i. In our proof of Theorem 1, we also prove this claim directly. Since the core is essentially
single-valued, under objective indifferences the core can be thought of as a unique mapping from agents to
house types. In other words, the core allocations are permutations of one another where agents may be
assigned to different houses, but always receive houses of the same type.

Corollary 1. For any two allocations x ̸= y in the core of an objective indifferences market, xiIiyi for all
i ∈ N .

Proof. Appendix A.1.

Though all TTC≻ mechanisms are core-selecting under objective indifferences, the core of the market
may be empty, as the following simple example shows.

Example 4. Let N = {1, 2, 3}. It is easy to verify that for the preference profile R = (R1, R2, R3) shown
below, there are no core allocations.

R1 R2 R3

w2, w3 w1 w1

w1 w2, w3 w2, w3

Any allocation x such that x1 ∈ {w1, w2} is blocked by Q = {1, 3} and x′ = (w3, w1). Similarly, any
allocation x such that x1 = w3 is blocked by Q = {1, 2} and x′ = (w2, w1).

When the core of an objective indifferences market is empty, all TTC≻ mechanisms select an allocation
in the weak core of the market. In fact, even under general indifferences, the weak core is non-empty and
TTC≻ mechanisms select an allocation in the weak core.

Definition 4. An allocation x is weakly blocked if there exists a coalition Q ⊆ N and allocation x′ such
that x′

Q = wQ and x′
iPixi for all i ∈ Q.

Definition 5. An allocation x is in the weak core of the market if it is not weakly blocked.
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Proposition 1. For any market, the weak core is non-empty and TTC≻ mechanisms select an allocation in
the weak core.

Proof. Appendix A.1.

4.2 Group strategy-proofness
TTC≻ also loses group strategy-proofness once we move from strict preferences to weak preferences. However,
in the intermediate case of objective indifferences, TTC≻ recovers group strategy-proofness. Further, TTC≻

mechanisms are not GSP in any larger “symmetric” domain. We say that a domain is symmetric if, when
h1Pih2 is possible, then so is h2Pih1. We will informally argue that this is not an onerous modeling restriction.

First we present a simple example demonstrating that under general indifferences, TTC≻ mechanisms
are not group strategy-proof. Example 5 shows how an agent can break his own indifference to benefit a
coalition member without harming himself.

Example 5. Let N = {1, 2, 3} and let Q = {1, 3}. For the preference profile R = (R1, R2, R3) and tie-
breaking profile ≻= (≻1,≻2,≻3) shown below, the TTC≻ allocation is x = (w2, w1, w3). However, if agent
1 were to report R′

1, then for R′ = (R′
1, R2, R3) the TTC≻ allocation is x′ = (w3, w2, w1). Note that x′

3P3x3

and x′
1I1x1, so TTC≻ is not GSP.

R1 R2 R3

w2, w3 w1 w1

w1 w2 w2

w3 w3

R′
1 R2 R3

w3 w1 w1

w2 w2 w2

w1 w3 w3

≻1 = ≻2 = ≻3

1
2
3︸ ︷︷ ︸

Preference profile R

︸ ︷︷ ︸
Preference profile R′

︸ ︷︷ ︸
Tie-breaking profile ≻

Objective indifferences excludes situations like Example 5 in two ways. First, it eliminates the possibility
that one agent is indifferent between two houses while another agent has a strict preference. Second, it
constrains the possible set of misreports available to a manipulating coalition, since agents can only report
indifference among all houses of the same type.2 Our next result characterizes the set of symmetric-maximal
domains on which TTC≻ mechanisms are GSP.

Before presenting our result, we must define “symmetric” and “symmetric-maximal” domains.

Definition 6. A domain Rn is symmetric if for any h1, h2 ∈ H, if there exists Ri ∈ R such that h1Pih2,
then there also exists R′

i ∈ R such that h2P
′
ih1.

Definition 7. A domain Rn is symmetric-maximal for an axiom A and a class of rules F if

1. Rn is symmetric,
2The constraint on agents’ reports is an important difference from Ehlers (2002).
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2. each f ∈ F is A on Rn, and

3. for any symmetric R̃n ⊃ Rn, there is some f ∈ F that is not A on R̃n.

In practical applications, symmetry is a natural restriction to place on the domain; if it is possible
that agents might report strictly preferring some house h to another house h′, we should not preclude the
possibility they strictly prefer h′ to h. Indeed, the point of mechanism design is that preferences are unknown
and must be solicited. It is easy to see that objective indifferences domains are symmetric. Relative to
maximality, symmetric-maximality restricts the possible expansions of objective indifferences domains that
we must consider.

Theorem 2. Rn is a symmetric-maximal domain on which TTC≻ mechanisms are group strategy-proof if
and only if it is an objective indifferences domain.

Proof. Appendix A.2.

Our proof uses similar reasoning to the proof that TTC is group strategy-proof under strict preferences
contained in Sandholtz and Tai (2024). Any coalition requires a “first mover” to misreport, but this agent
must receive an inferior house to the one he originally received. In the following example, we note that
objective indifferences domains are not maximal domains on which TTC≻ mechanisms are GSP.

Example 6. Let N = {1, 2}, H = {h1, h2}, and H = {{h1, h2}}. Suppose R′ = R(H) ∪ (h1Ph2) =

{(h1Ih2), (h1Ph2)}. That is, expand the objective indifferences domain induced by H to include the ordering
(h1Ph2). Note that this expanded domain is not symmetric, since R′ does not also contain the preference
ordering (h2Ph1).

Let ≻= ((1 ≻1 2), (1 ≻2 2)). We will show that for any market (N,H,w,R), TTC≻ is group strategy-
proof. It is straightforward to show that the same is true for the remaining 3 possible tie-breaking profiles.

Without loss of generality, assume wi = hi. If both agents have the same preferences, then there is clearly
no profitable group manipulation. Consider the following two possible preference profiles:

R1 R2

h1 h1, h2

h2

or
R1 R2

h1, h2 h1

h2

In the first case, the TTC≻ allocation is x = (h1, h2), so both agents receive one of their most preferred
houses. Therefore, it is not possible for either agent to strictly improve. In the second case, the TTC≻

allocation is x = (h1, h2). It would benefit agent 2 for agent 1 to rank h2 above h1, since agent 1 is
indifferent between h1 and h2. However, this is not possible since (h2Ph1) /∈ R′.
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5 Conclusion
Our main set of results show that objective indifferences domains are maximal domains on which TTC≻

mechanisms are Pareto efficient, core selecting, and group strategy-proof. It is remarkable that the maximal
domains on which TTC≻ satisfies these three distinct properties (essentially) coincide. We therefore view
objective indifferences domains as the most general possible setting where TTC≻ can be applied without
any tradeoffs. Moreover, we interpret our results as showing that it subjective indifferences, not indifferences
themselves, which cause issues for TTC when we relax the assumption of strict preferences.

Therefore, in markets where one could reasonably assume that any indifferences are shared among all
agents, TTC≻ is a sensible choice of mechanism. Even when the market imposes constraints on the possible
tie-breaking rules, it is guaranteed that TTC≻ will be PE, CS, and GSP regardless of which tie-breaking
rule is chosen. Moreover, TTC≻ is computationally efficient, as well as easy to explain and implement.

We do not believe our results imply that TTC≻ should be avoided in settings beyond objective indiffer-
ences, or that market designers should only allow objective indifference preference reports. Consider school
choice in San Francisco, which uses a lottery system to assign school seats at most public schools. While
current details are not readily available, Abdulkadiroglu, Featherstone, Niederle, Pathak, and Roth designed
a system using TTC.3 At some schools, there are seats dedicated to language immersion programs and other
seats that are intended for general education. For instance, at West Portal Elementary School, there are
roughly 120 seats, approximately 25% of which are for Cantonese immersion.4 The Cantonese immersion
seats at West Portal are further divided into seats reserved for children who are already bilingual and students
who do not yet speak Cantonese. Suppose families’ preferences over schools can be described by objective
indifferences. That is, suppose families care only about which school they attend, and are indifferent about
what kind of seat they receive. Our results suggest that TTC≻ is an excellent candidate mechanism for this
setting.

However, the real situation may be more complicated. Perhaps some families are indifferent between
bilingual and regular seats, while other families have strict preferences for one type of seat or the other. For
example, a family whose children are already bilingual in Cantonese may be indifferent between the two types
of seats at West Portal, while another family may have a strict preference for cultural community through
the Cantonese bilingual program. In this case, our results show that TTC≻ mechanisms are no longer PE,
CS, nor GSP. However, the policy implications are not clear. While there are mechanisms for the general
indifferences case, these mechanisms may have other tradeoffs, such as increased computational or cognitive
complexity. Our results lay out exactly the situations where TTC≻ is Pareto efficient, core-selecting, and
group strategy-proof. However, the results do not necessarily proscribe its use outside of these settings.
Rather, one could view this set of results as rationalizing the use of TTC≻ in many settings where TTC≻

3See the blog post by Al Roth: https://marketdesigner.blogspot.com/2010/09/san-francisco-school-choice-goes-in.html. As
he notes, the team were not privy to the implementation or resulting data.

4https://web.archive.org/web/20250422170224/https://www.sfchronicle.com/bayarea/article/sfusd-competitive-public-
schools-20252957.php
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has actually been suggested and applied.
Our paper opens interesting new lines of inquiry. First, we believe that studying matching markets with

constrained indifferences is an exciting avenue for future research. In many real-world matching markets,
agents have indifferences, but often with a certain structure imposed by the specific market. Understanding
how adding structure to the case of general indifferences may affect matching problems is not only theoreti-
cally interesting, but could improve policy choices. For instance, there may be tradeoffs in the selection of
the partition H given the set of objects H. In some cases, there may be some ambiguity: are two dorms
with the same floor plan but on different floors of the same building equivalent? Inappropriately combining
indifference classes might lead to efficiency losses in the spirit of Example 3. On the other hand, splitting
indifference classes might allow group manipulations like in Example 5. We leave formal results as future
work. We also leave an axiomatic characterization of TTC≻ on objective indifferences domains as future
work.
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Appendix A Proofs

We provide proofs for the results in the main text. Note that individual rationality (IR) of TTC≻ follows
immediately from IR of TTC and the fact that TTC≻(R) ≡ TTC(R≻).

Given a market (N,H,w,R) and mechanism TTC≻, let Sk(R) be the kth cycle executed in the process
of TTC≻(R). We will appeal to the following fact.

Fact 1. Fix a market (N,H,w,R) and a tie-breaking profile ≻. Let x = TTC≻(R). If i ∈ Sk(R) and xjPixi,
then j ∈ ∪k−1

ℓ=1Sℓ(R).

Fact 1 follows from the definitions: xjPixi implies xjPi,≻ixi, and TTC≻(R) ≡ TTC(R≻). Under
TTC(R≻), if xjPi,≻ixi, then j must have been assigned before i; otherwise at step k, i would have pointed
at xj ’s owner instead of at xi’s owner.

We also make use of the following lemma.

Lemma 1. Fix (N,H,w) and a domain Rn. For any two preference relations Rα, Rβ ∈ R and houses
h1, h2 ∈ H, let

{i ∈ N : wiPαh1} ⊆ A ⊆ {i ∈ N : wiRαh1}

and let
{i ∈ Ac : wiPβh2} ⊆ B ⊆ {i ∈ Ac : wiRβh2}.

Let ≻ be any tie-breaking profile such that for all i ∈ N , i ≻i j for all j ̸= i. Fix a preference profile R ∈ Rn

and let x = TTC≻(R). If Ri = Rα for all i ∈ A and Ri = Rβ for all i ∈ B, then xi = wi for all i ∈ A ∪B.

Proof of Lemma 1. First we show that xi = wi for all i ∈ A. Toward a contradiction, suppose that W =

{i ∈ A : xi ̸= wi} is non-empty. Take some agent i∗ ∈ W such that wi∗Rαwi for all i ∈ W . By individual
rationality of x, xi∗Ri∗wi∗ . Also, since i∗ ≻i∗ i for all i ̸= i∗, by definition of TTC≻ we know that if xi∗Ii∗wi∗

then xi∗ = wi∗ . Therefore, since we assumed that xi∗ ̸= wi∗ , xi∗Ri∗wi∗ implies xi∗Pi∗wi∗ . Since i∗ ∈ W ⊆ A,
Ri∗ = Rα; therefore, xi∗Pi∗wi∗ implies xi∗Pαwi∗ . Consider the agent j ∈ N such that xi∗ = wj . Note that
j ∈ A, since i∗ ∈ A and wjPαwi∗ . Also, xj ̸= wj , so j ∈ W . But this contradicts our assumption that
wi∗Rαwi for all i ∈ W .

Next we show that xi = wi for all i ∈ B. Toward a contradiction, suppose that W = {i ∈ B : xi ̸= wi} is
non-empty. Take some i∗ ∈ W such that wi∗Rβwi for all i ∈ W . By individual rationality of x, xi∗Ri∗wi∗ .
Also, since i∗ ≻i∗ i for all i ̸= i∗, by definition of TTC≻ we know that if xi∗Ii∗wi∗ then xi∗ = wi∗ . Therefore,
since we assumed that xi∗ ̸= wi∗ , xi∗Ri∗wi∗ implies xi∗Pi∗wi∗ . Since i∗ ∈ W ⊆ B, Ri∗ = Rβ ; therefore,
xi∗Pi∗wi∗ implies xi∗Pβwi∗ . Consider the agent j ∈ N such that xi∗ = wj . We know that j ∈ Ac, because
we showed that xi = wi for all i ∈ A and xj ̸= wj . Therefore, j ∈ B, since i∗ ∈ B and wjPβwi∗ . Also, since
xj ̸= wj , j ∈ W . But this contradicts our assumption that wi∗Rβwi for all i ∈ W .
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Appendix A.1 Pareto efficiency and core-selecting
Theorem 1. The following are equivalent:

1. Rn is an objective indifferences domain.

2. Rn is a maximal domain on which TTC≻ mechanisms are Pareto efficient.

3. Rn is a maximal domain on which TTC≻ mechanisms are core-selecting.

Fix (N,H,w). The result is trivial for |N | = 1, so assume |N | ≥ 2.

Proof of 1. ⇐⇒ 2. First we show that for any objective indifferences domain, TTC≻ mechanisms are PE.
Fix some tie-breaking rule ≻. Let H be any partition of H and let R ∈ R(H)n. If H = {H}, the result is
trivial, so suppose the partition has at least two blocks. Let x = TTC≻(R), and suppose that some feasible
allocation y Pareto dominates x. Let W = {i ∈ N : yiPixi} be the set of agents who strictly improve under y,
which must be non-empty. Let k be the first step in the process of TTC≻(R) that an agent in W is assigned.
That is, ∪k−1

ℓ=1Sℓ(R)∩W = ∅ and Sk(R)∩W ̸= ∅. Take some i∗ ∈ Sk(R)∩W . If yi∗Pi∗xi∗ , then by definition
of objective indifferences, η(yi∗) ̸= η(xi∗). Therefore, Fact 1 implies that {i ∈ N : xi ∈ η(yi∗)} ⊆ ∪k−1

ℓ=1Sℓ(R).
By feasibility of y, if η(yi∗) ̸= η(xi∗), there must be an agent j ∈ ∪k−1

ℓ=1Sℓ(R) for whom xj ∈ η(yi∗) but
yj /∈ η(yi∗). Therefore, ¬(yjIjxj). Since y Pareto dominates x, it must be that yjPjxj . But then j ∈ W ,
contradicting our assumption that ∪k−1

ℓ=1Sℓ(R) ∩W = ∅.
Next we show that for any domain R̃n where R̃n ⊈ R(H)n for any partition H of H, TTC≻ mechanisms

are not PE on R̃n. If R̃n ⊈ R(H)n for any H, then R̃ must contain two orderings, Rα and Rβ , such that
for some h1, h2 ∈ H we have h1Iαh2 but h1Pβh2. Taking only the existence of Rα, Rβ ∈ R̃ for granted, we
find a preference profile R ∈ R̃n and tie-breaking profile ≻ such that TTC≻(R) is not PE. Without loss of
generality, assume wi = hi for all i ∈ N . Define A = {i ∈ N : wiRαw1} \{2}. Consider the preference profile
R such that

Ri =

Rα if i ∈ A

Rβ if i ∈ Ac.

Note that 1 ∈ A and 2 ∈ Ac, so R1 = Rα and R2 = Rβ . Take any tie-breaking profile ≻ such that for all
i ∈ N , i ≻i j for all j ̸= i. Let x = TTC≻(R). It follows directly from Lemma 1 that x = w. However, note
that w2I1w1(= x1) and w1P2w2(= x2), so x is Pareto dominated by y = (w2, w1, w3, ..., wn).

Proof of (1) ⇐⇒ (3). First we show that for any objective indifferences domain, TTC≻ mechanisms are
CS. Fix some tie-breaking rule ≻. Let H be any partition of H and let R ∈ R(H)n. If H = {H}, the result is
trivial, so suppose the partition has at least two blocks. Suppose that the core of (N,H,w,R) is non-empty
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and contains some allocation y. Let x = TTC≻(R). It suffices to show that xiIiyi for all i ∈ N . We proceed
by induction on the steps of TTC≻(R).

Step 1 By definition of TTC≻ , for all i ∈ S1(R) we know that xiRih for all h ∈ H. Therefore, xiRiyi

for all i ∈ S1(R). Suppose there is some i∗ ∈ S1(R) such that xi∗Pi∗yi∗ . Then S1(R) and x block y,
contradicting our assumption that y is in the core. Thus, xiIiyi for all i ∈ S1(R).

Step k Assume that xiIiyi for all i ∈ ∪k−1
ℓ=1Sℓ(R). Suppose that yi∗Pi∗xi∗ for some i∗ ∈ Sk(R). By

definition of objective indifferences, η(yi∗) ̸= η(xi∗). By Fact 1, {i ∈ N : xi ∈ η(yi∗)} ⊆ ∪k−1
ℓ=1Sℓ(R).

By feasibility of y, if η(yi∗) ̸= η(xi∗), there must be an agent j in ∪k−1
ℓ=1Sℓ(R) for whom xj ∈ η(yi∗)

but yj /∈ η(yi∗). Therefore, ¬(yjIjxj), contradicting our assumption that xiIiyi for all i ∈ ∪k−1
ℓ=1Sℓ(R).

Thus we have that xiRiyi for all i ∈ Sk(R). Now suppose there is some i∗ ∈ Sk(R) such that xi∗Pi∗yi∗ .
Then Sk(R) and x block y, contradicting our assumption that y is in the core.

Thus xiIiyi for all i ∈ N , so x must also be in the core. (Since y was an arbitrary allocation in the core, this
also proves Corollary 1.)

Next we show that for any domain R̃n where R̃n ⊈ R(H)n for any partition H of H, TTC≻ mechanisms
are not CS on R̃n. If R̃n ⊈ R(H)n for any H, then R̃ must contain two orderings, Rα and Rβ , such
that for some h1, h2 ∈ H we have h1Iαh2 but h1Pβh2. Without loss of generality, assume that h1Rβh

for all h ∈ H such that hIαh2. Also, without loss of generality, assume wi = hi for all i ∈ N . Define
A = {i ∈ N : wiRαw1} \ {2} and consider the preference profile R ∈ R̃n where Ri = Rα for all i ∈ A and
Ri = Rβ for all i ∈ Ac. Let x = TTC≻(R). It follows directly from Lemma 1 that x = w. However, as
we noted earlier, x is Pareto dominated by y = (w2, w1, w3, ..., wn), and is therefore not in the core of the
market. It remains to show that y is in the core.

Toward a contradiction, suppose there is a coalition Q and allocation z that blocks y. Let W = {i ∈ Q :

ziPiyi}, which must be non-empty.

Claim 1. W ⊆ Ac.

Proof. Toward a contradiction, suppose WA := W ∩ A is non-empty and take some i∗ ∈ WA such
that wi∗Rαwi for all i ∈ W . Since zi∗Pi∗yi∗ and yi∗Ri∗xi∗Ri∗wi∗ , zi∗Pi∗wi∗ . Also, since i∗ ∈ A,
Ri∗ = Rα, so zi∗Pi∗wi∗ implies zi∗Pαwi∗ . Therefore, by feasibility of z and since zQ = wQ, if zi∗Pαwi∗

there must be an agent j ∈ Q for whom wjIαzi∗ but ¬(wjIαzj). Note that j ∈ A \ {1}, since i∗ ∈ A

and wjPαwi∗ . Thus, yj = wj and Rj = Rα. Recall that ziRiyi for all i ∈ Q; therefore, yj = wj ,
Rj = Rα, and ¬(wjIαzj) imply that zjPjyj . That is, j ∈ WA. But this contradicts our assumption
that wi∗Rαwi for all i ∈ W .

Claim 2. Q ∩A ̸= ∅.

Proof. Toward a contradiction, suppose that Q ⊆ Ac. Therefore, Ri = Rβ for all i ∈ Q. Now, take
some i∗ ∈ W such that wi∗Rβwi for all i ∈ W . Since i∗ ∈ W , we know that zi∗Pβyi∗ . Also, since y

17



Pareto dominates x and x is individually rational, yi∗Rβxi∗Rβwi∗ . So zi∗Pβwi∗ . By feasibility of z
and since zQ = wQ, if zi∗Pβwi∗ , there must exist an agent j ∈ Q such that wjIβzi∗ but ¬(wjIβzj).
Since j ∈ Q, we have zjRβyj . Therefore, since y Pareto dominates x and x is individually rational,
zjRβwj . So ¬(wjIβzj) implies zjPβwj . If j ∈ Ac \ {2}, then wj = yj , in which case j ∈ W . However,
this contradicts our assumption that wi∗Rβwi for all i ∈ W . Therefore, it must be that j = 2. Since
Q ⊆ Ac and zQ = wQ, we know that z2 ̸= w1. Also, since 2 ∈ Q, we know that z2Rβw1(= y2).
Consequently, by feasibility of z, there must be an agent j∗ ∈ Q such that (yj∗ =)wj∗Rβ w1, but
¬(zj∗Iβwj∗). Since j∗ ∈ Q, zj∗Rβwj∗ , so ¬(zj∗Iβwj∗) implies zj∗Pβwj∗ . But then j∗ ∈ W and
wj∗ Iβ z2 Rβ w1 Pβ w2 Pβ wi∗ , again contradicting our assumption that wi∗Rβwi for all i ∈ W .

Without loss of generality, assume that the agents in Q form a single trading cycle under z.5 Since Q

contains agents in both A and Ac, there must be an agent b̄ ∈ Ac such that zb̄ ∈ wA and an agent ā ∈ A such
that zā ∈ wAc . In fact, ā must be the only agent in A who receives a house from an agent in Ac. Recall that
for every i ∈ Ac \ {2}, w1Pαwi. Therefore, if there exists some agent a ̸= ā in A such that za ∈ wAc , then
either w1Pαzā or w1Pαza. But since a, ā ∈ A, waRαw1 and wāRαw1, contradicting individual rationality of
z for either a or ā. Also note that zā = w2, since if zā ∈ wAc\{2} we would have wāPαzā, violating individual
rationality of z. Moreover, b̄ must be the only agent in Ac to receive a house from an agent in A, since only
one agent in A gets a house from an agent in Ac and Q forms a single trading cycle. Therefore, we can write
the trading cycle Q forms as

a1 → ... → am → ā → 2 → b1 → ... → b̄ → a1

where a1, ..., am, ā ∈ A and 2, b1, ..., b̄ ∈ Ac.
Since W ⊆ Ac, we know that zaIαya for all a ∈ {a1, ..., am, ā}. Also, recall that yiIαwi for all i ∈ A.

Therefore, zaIαwa for all a ∈ {a1, ..., am, ā}. In particular, since zā = w2, we know that wāIαw2. Also, since
zam = wā, wamIαwā. Therefore, wamIαw2. By repeatedly applying the same reasoning, it is straightforward
to show that wa1

Iαw2. Also, we know that zbRβyb for all b ∈ {2, b1, ..., b̄}, with zbPβyb for at least one b

since W ̸= ∅. Recall that y2 = w1, so (z2 =)wb1Rβw1. Also, (zb1 =)wb2Rβwb1 , so wb2Rβw1. By repeatedly
applying the same reasoning, it is straightforward to show that wa1

Pβw1. But then wa1
Pβw1 and wa1

Iαw2,
contradicting our assumption that 1Rβh for all hIαw2.

Proposition 1. For any market, the weak core is non-empty and TTC≻ mechanisms select an allocation in
the weak core.

Proof. Fix a market (N,H,w,R) and a tie-breaking profile ≻. Let x = TTC≻(R). Toward a contradiction,
suppose there exists a coalition Q ⊆ N and allocation y that weakly blocks x. That is, yQ = wQ and yiPixi

for all i ∈ Q. Let k be the first step of TTC≻(R) that an agent in Q is assigned; that is, Sk(R)∩Q ̸= ∅ and
5If the agents in Q formed two or more trading cycles, then some cycle C must contain an agent i such that ziPiyi. Moreover,

since C ⊆ Q, zjRjyj for all j ∈ C; therefore, it is without loss of generality to take Q = C.

18



∪k−1
ℓ=1Sℓ(R) ∩Q = ∅. Take some i ∈ Sk(R) ∩Q. Since yQ = wQ, we know that yi = wj for some j ∈ Q. But

yiPixi implies j ∈ ∪k−1
ℓ=1Sℓ(R) ∩Q, contradicting that ∪k−1

ℓ=1Sℓ(R) ∩Q = ∅.

Appendix A.2 Group strategy-proofness
Theorem 2. Rn is a symmetric-maximal domain on which TTC≻ mechanisms are group strategy-proof if
and only if it is an objective indifferences domain.

Before proving Theorem 2, we review an important property of TTC≻ and state a useful lemma. Let
L(h,Ri) = {h′ ∈ H : hRih

′} be the lower contour set of a preference ranking Ri at house h.

Monotonicity (MON). A rule f is monotone if f(R) = f(R′) for any preference profiles R and R′ such
that L(fi(R), Ri) ⊆ L(fi(R), R′

i) for all i ∈ N .

That is, a rule f is monotone if, whenever any set of agents move their allocations upwards in their rankings,
the allocation remains the same. It is straightforward to show that TTC is monotone for strict preferences;
e.g. Takamiya (2001). Then, since TTC≻(R) ≡ TTC(R≻) for any R and ≻, it follows directly that TTC≻

mechanisms are monotone.
The following result is adapted from Sandholtz and Tai (2024), who show it for TTC with strict prefer-

ences.

Lemma 2 (Sandholtz and Tai, 2024). For any R,R′, let x = TTC≻(R) and y = TTC≻(R
′). Suppose there

is some i such that yiPi,≻xi. Then there exists some agent j and house h such that hP ′
j,≻xj and xjPj,≻h.

We now provide our proof of Theorem 2.

Proof of Theorem 2. Fix (N,H,w). The result is trivial for |N | = 1, so assume |N | ≥ 2. First we show that
for any objective indifferences domain, TTC≻ mechanisms are GSP. Fix some tie-breaking rule ≻. Let H
be any partition of H and let R ∈ R(H)n. If H = {H}, the result is trivial, so suppose assume that H has
at least two blocks. Suppose Q ⊆ N reports R′

Q where R′ = (R′
Q, R−Q) ∈ R(H)n. Let y = TTC≻(R

′). We
will show that if yiPixi for some i ∈ Q, then xjPjyj for some j ∈ Q. Let R′′ = (R′′

Q, R−Q) be the preference
profile in R(H)n such that for each i ∈ Q, R′′

i top-ranks the houses in η(yi) and otherwise preserves the
ordering of Ri. That is, for any h ∈ η(yi) and h′ /∈ η(yi), hP ′′

i h
′; otherwise, hR′′

i h
′ if and only if hRih

′. Let
z = TTC≻(R

′′). By monotonicity of TTC≻, z = y. Take any i∗ ∈ Q such that yi∗Pi∗xi∗ . Since z = y, this
implies zi∗Pi∗xi∗ , and consequently, zi∗Pi∗,≻i∗xi∗ . Applying Lemma 2, there must be some j ∈ Q and h ∈ H

such that xjPj,≻jh but hP ′′
j,≻j

xj . Note that h /∈ η(xj); if it were, then for any R,R′′ ∈ R(H)n, xjPj,≻jh

if and only if xjP
′′
j,≻j

h. Therefore, xjPjh and hP ′′
j xj .6 The only change from Rj to R′′

j is to top-rank the
houses in η(yj), so it must be that h ∈ η(yj). But then xjPjyj , as desired.

Next we show that for any symmetric domain R̃n where R̃n ⊈ R(H)n for any H, TTC≻ mechanisms are
not GSP on R̃n. If R̃n ̸⊆ R(H)n for any H, then R̃ must contain two orderings, Rα and Rβ , such that for

6This is where the restriction to objective indifferences is used. Under general indifferences, this is not necessarily true.
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some h1, h2 ∈ H we have h1Iαh2 but h1Pβh2. The symmetric requirement also necessitates that R̃ contains
some Rγ such that h2Pγh1. Taking only the existence of Rα, Rβ , Rγ ∈ R̃ for granted, we find a preference
profile R ∈ R̃n and tie-breaking profile ≻ such that TTC≻(R) is not GSP.

Without loss of generality, assume wi = hi for all i ∈ N . Define A = {i ∈ N : wiRαw1} \ {2},
B = {i ∈ Ac : wiRβw1} ∪ {2}, and C = N \ (A ∪B). Consider the preference profile R ∈ R̃n where

Ri =


Rα if i ∈ A

Rβ if i ∈ B

Rγ if i ∈ C.

Note that 1 ∈ A and 2 ∈ B, so R1 = Rα and R2 = Rβ . Let ≻ be any tie-breaking profile such that for
all i ∈ N , i ≻i j for all j ̸= i. Also, let 2 ≻1 j for all j ̸= 1, 2. Let x = TTC≻(R).

Claim 3. x1 = w1 and w1P2x2.

Proof of Claim 3. It follows directly from Lemma 1 that xi = wi for all i ∈ (A∪B)\{2}. In particular,
x1 = w1. Consider the agent j ∈ N such that x2 = wj . Since xi = wi for all i ∈ (A ∪ B) \ {2}, we
know that j ∈ C ∪ {2}. Therefore, w1Pβwj , so w1P2x2.

Now suppose that agent 1 misreports R′
1 = Rγ . Let R′ = (R′

1, R−1) and let y = TTC≻(R
′).

Claim 4. y1 = w2 and y2 = w1.

Proof of Claim 4. It follows directly from Lemma 1 that yi = wi for all i ∈ (A∪B)\{1, 2}. Moreover,
note that yi = wi for all i ∈ C such that wiPγw2. To see this, suppose W = {i ∈ C : wiPγw2, yi ̸= wi}
is non-empty. Take any i∗ ∈ W such that wi∗Rγwi for all i ∈ W . By individual rationality of y,
yi∗Ri∗wi∗ . Also, since i∗ ≻i∗ i for all i ̸= i∗, by definition of TTC≻ we know that if yi∗Ii∗wi∗ then
yi∗ = wi∗ . Therefore, yi∗Ri∗wi∗ implies yi∗Pi∗wi∗ . Since i∗ ∈ C, Ri∗ = Rγ , so yi∗Pγwi∗ . Consider
the agent j such that yi∗ = wj . We know that j /∈ (A ∪ B) \ {1, 2}, because yj ̸= wj and we showed
that yi = wi for all i ∈ (A ∪B) \ {1, 2}. Moreover, j /∈ {1, 2} because wjPγwi∗Pγw2Pγw1. Therefore,
j ∈ C. Also, j ∈ W . But this contradicts our assumption that wi∗Rγwi for all i ∈ W .

Toward a contradiction, suppose that y1 ̸= w2. Since yi = wi for all i ∈ (A ∪ B) \ {1, 2} and all
i ∈ C such that wiPγw2, it must be that w2Rγy1. Recall that 2 ≻1 i for all i ̸= 1, 2. Therefore, if
w2Rγy1, then 2 ∈ Sk(R

′) and 1 ∈ Sℓ(R
′) for k < ℓ. That is, agent 2 must have been assigned at an

earlier step of TTC≻(R
′) than agent 1 was; otherwise, agent 1 would have pointed at agent 2 at step

ℓ when 1 was assigned to y1. This implies that y2R2w1 and y2 ̸= w1. But R2 = Rβ , so y2Rβw1. Then
y2 = wj for some j ∈ (A ∪B) \ {1, 2}, contradicting yi = wi for all i in (A ∪B) \ {1, 2}.

So (w2 =)y1I1x1(= w1) and (w1 =)y2P2x2 for Q = {1, 2}, meaning TTC≻(R) is not GSP.
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Appendix B Relation to school choice with priorities
We briefly note that TTC in the objective indifferences setting is not identical to TTC in the school choice
with priorities setting. Intuitively, in Shapley-Scarf markets with objective indifferences, the fixed tie-
breaking rule determines who the agents point at; conversely, a school priority ranking determines which
schools point at i. Consider an example with 3 schools and 4 students.

Example 7. Let the set of schools (objects) be H = {A,B,C}, with C having two slots. Let the students
be N = {a, b, c1, c2}, where a is “endowed” with A, and so on. Below are a possible school priority ranking
for the school choice setting and a possible tie-breaking profile for the Shapley-Scarf setting.

A B C
a b c1
b a c2
c1 c2 a
c1 c1 b

vs

≻a ≻b ≻c1 ≻cc2

c1 c2 c1 c1
c2 c1 c2 c2
a a a a
b b b b︸ ︷︷ ︸

School priority for school choice setting
︸ ︷︷ ︸

Tie-breaking profile for Shapley-Scarf setting

Consider the preference profiles R = (Ra, Rb, Rc1 , Rc2) and R′ = (R′
a, R

′
b, R

′
c1 , R

′
c2), shown below.

Ra Rb Rc1 Rc2

C C A A
A A B B
B B C C

R′
a R′

b R′
c1 R′

c2

C C B B
A A A A
B B C C︸ ︷︷ ︸

Preference profile R′
︸ ︷︷ ︸

Preference profile R′

Note that under R and R′, both c1 and c2 have the same preferences. TTC with school priorities results
in (A : c1, B : c2, C : ab) and (A : c2, B : c1, C : ab) under R and R′ respectively. Note that c1 gets his
preferred school in either case, since his priority at school C is higher than c2’s priority at school C. In
fact, in the school choice setting, since c1 has higher priority at C than c2 has, whenever c1 and c2 have the
same preferences c1 will weakly prefer his assignment to c2’s assignment. By contrast, in the Shapley-Scarf
setting, TTC≻ results in (A : c1, B : c2, C : ab) and (A : c1, B : c2, C : ab) under R and R′ respectively. Now,
c1 does not necessarily always get his top choice when c1 and c2 have the same preferences. Under R′, c2
gets his top choice at the expense of c1, since c2 ≻b c1.
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